<table>
<thead>
<tr>
<th>Terminology for Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired immunity</td>
</tr>
<tr>
<td>addressins</td>
</tr>
<tr>
<td>adjuvants</td>
</tr>
<tr>
<td>Alpha 2-macroglobulin</td>
</tr>
<tr>
<td>Affinity maturation</td>
</tr>
<tr>
<td>Allelic exclusion</td>
</tr>
<tr>
<td>allotypes</td>
</tr>
<tr>
<td>anergy</td>
</tr>
<tr>
<td>Antigen presentation</td>
</tr>
<tr>
<td>antigen-presenting cells</td>
</tr>
<tr>
<td>Antigen processing</td>
</tr>
<tr>
<td>AP-1</td>
</tr>
<tr>
<td>autocrine/paracrine</td>
</tr>
<tr>
<td>autoimmunity</td>
</tr>
<tr>
<td>B7</td>
</tr>
<tr>
<td>beta2-microglobulin</td>
</tr>
<tr>
<td>C3/C5 convertase</td>
</tr>
<tr>
<td>Catalytic antibody</td>
</tr>
<tr>
<td>CD28</td>
</tr>
<tr>
<td>CD4/CD8</td>
</tr>
<tr>
<td>Cell mediated immunity</td>
</tr>
<tr>
<td>class II-associated invariant chain peptide (CLIP)</td>
</tr>
<tr>
<td>Class switching</td>
</tr>
<tr>
<td>Clonal deletion</td>
</tr>
<tr>
<td>clonal election theory</td>
</tr>
<tr>
<td>complementarity-determining regions</td>
</tr>
<tr>
<td>Complement factor P/H/I/DAF</td>
</tr>
<tr>
<td>Complement fixation/activation</td>
</tr>
<tr>
<td>co-receptors</td>
</tr>
<tr>
<td>co-stimulators</td>
</tr>
<tr>
<td>C-reactive protein</td>
</tr>
<tr>
<td>Dendritic cells</td>
</tr>
<tr>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>Double negative/positive thymocytes</td>
</tr>
<tr>
<td>endocytosis/phagocytosis</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>epitope</td>
</tr>
<tr>
<td>Fab/Fc region</td>
</tr>
<tr>
<td>GALT/MALT</td>
</tr>
<tr>
<td>Coblet cell</td>
</tr>
<tr>
<td>granulocytes</td>
</tr>
<tr>
<td>granzyme/perforin</td>
</tr>
<tr>
<td>heavy/light chain</td>
</tr>
<tr>
<td>helper/cytotoxic/suppressor T cells</td>
</tr>
<tr>
<td>hematopoisis</td>
</tr>
<tr>
<td>HLA-DM</td>
</tr>
<tr>
<td>homing</td>
</tr>
<tr>
<td>humoral/cellular immunity</td>
</tr>
<tr>
<td>hybridoma</td>
</tr>
<tr>
<td>Idiotype anti-idiotype network</td>
</tr>
<tr>
<td>inflammation</td>
</tr>
<tr>
<td>Inflammatory cytokines/IL-6/IL-12/TNF-alpha/chemokine</td>
</tr>
<tr>
<td>Immunoglobulin superfamily</td>
</tr>
<tr>
<td>innate/adaptive immunity</td>
</tr>
<tr>
<td>integrins</td>
</tr>
<tr>
<td>interleukins</td>
</tr>
<tr>
<td>isotypes</td>
</tr>
<tr>
<td>ITAMs</td>
</tr>
<tr>
<td>Junctional diversity</td>
</tr>
<tr>
<td>LAF-1/ICAMs</td>
</tr>
<tr>
<td>Langerhans’cell</td>
</tr>
<tr>
<td>Lck/Fyn</td>
</tr>
<tr>
<td>linear/conformational/dicontinuous epitopes</td>
</tr>
<tr>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>Mast cell</td>
</tr>
<tr>
<td>megakaryocytes</td>
</tr>
<tr>
<td>Membrane attack complex</td>
</tr>
<tr>
<td>MHC class I/II</td>
</tr>
<tr>
<td>MHC restriction</td>
</tr>
<tr>
<td>Mixed lymphocyte reaction</td>
</tr>
<tr>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>Natural killer cells</td>
</tr>
<tr>
<td>necrosis/apoptosis</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>NFAT</td>
</tr>
<tr>
<td>NF kappaB</td>
</tr>
<tr>
<td>Natur killer cells</td>
</tr>
<tr>
<td>Opportunistic pathogen</td>
</tr>
<tr>
<td>opsonin</td>
</tr>
<tr>
<td>opsonization</td>
</tr>
<tr>
<td>Paneth cell</td>
</tr>
<tr>
<td>passive/active immunity</td>
</tr>
<tr>
<td>Periarteriolar lymphoid sheath</td>
</tr>
<tr>
<td>Peyer’s patches</td>
</tr>
<tr>
<td>phagolysosome</td>
</tr>
<tr>
<td>phagocytosis</td>
</tr>
<tr>
<td>phagolysosome</td>
</tr>
<tr>
<td>Pluripotent hematopoietic stem cell</td>
</tr>
<tr>
<td>P nucleotides</td>
</tr>
<tr>
<td>positive/negative selection</td>
</tr>
<tr>
<td>primary/secondary lymphoid tissue</td>
</tr>
<tr>
<td>pro/pre/immature/mature/naïve/virgin/plasma/memoryBcell</td>
</tr>
<tr>
<td>Professional antigen-presenting cell</td>
</tr>
<tr>
<td>proteasome</td>
</tr>
<tr>
<td>selectin</td>
</tr>
<tr>
<td>Sepsis/septic shock</td>
</tr>
<tr>
<td>Somatic hypermutation</td>
</tr>
<tr>
<td>STATs</td>
</tr>
<tr>
<td>suppressor/regulatory CD4 T cells</td>
</tr>
<tr>
<td>Surrogate light chain</td>
</tr>
<tr>
<td>Terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>Th1/Th2</td>
</tr>
<tr>
<td>Thymic selection</td>
</tr>
<tr>
<td>thymocytes</td>
</tr>
<tr>
<td>Tissue typing</td>
</tr>
<tr>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>translocation/proto-oncogenes</td>
</tr>
<tr>
<td>Transporter associated with antigen processing(TAP)</td>
</tr>
<tr>
<td>variable/constant regions</td>
</tr>
<tr>
<td>ZAP-70</td>
</tr>
</tbody>
</table>
Chapter 1
Elements of the Immune System and their Roles in Defense
1-1 Numerous commensal microorganisms inhabit healthy human bodies
1-2 Pathogens are infectious organisms that cause disease
1-3 The skin and mucosal surfaces form barriers against infection
1-4 The innate immune response causes inflammation at sites of infection
1-5 The adaptive immune response adds to an ongoing innate immune response
1-6 Adaptive immunity is better understood than innate immunity
1-7 Immune system cells with different functions all derive from hematopoietic stem cells
1-8 Most lymphocytes are present in specialized lymphoid tissues
1-9 Adaptive immunity is initiated in secondary lymphoid tissues
1-10 The spleen provides adaptive immunity to blood infections
1-11 Most secondary lymphoid tissue is associated with the gut
1-12 Adaptive immune responses generally give rise to long-lived immunological memory and protective immunity
1-13 The immune system can be compromised by inherited immunodeficiencies or by the actions of certain pathogens

Summary to Chapter 1
Questions

Chapter 2
Innate Immunity
2-1 A variety of defense mechanisms have evolved to eliminate the different types of pathogen
2-2 Complement is a system of plasma proteins that marks pathogens for destruction
2-3 At the start of an infection, complement activation proceeds by the alternative pathway
2-4 Regulatory proteins determine the extent and site of C3b deposition
2-5 Phagocytosis by macrophages provides a first line of cellular defense against invading microorganisms
2-6 The terminal complement proteins lyse pathogens by forming a membrane pore
2-7 Small peptides released during complement activation induce local inflammation
2-8 Several classes of plasma protein limit the spread of infection
2-9 Defensins are a family of variable antimicrobial peptides
2-10 Innate immune receptors distinguish features of microbial structure
2-11 Toll-like receptors sense the presence of infection
2-12 Signaling through Toll-like receptors leads to two different cytokine responses
2-13 Activation of resident macrophages induces inflammation at sites of infection
2-14 Neutrophils are dedicated phagocytes that are summoned to sites of infection
2-15 The homing of neutrophils to inflamed tissues involves altered interactions with vascular endothelium
2-16 Neutrophils are potent killers of pathogens and are themselves programmed to die
2-17 Inflammatory cytokines raise body temperature and activate hepatocytes to make the acute-phase response
2-18 The lectin pathway of complement activation is initiated by mannose-binding lectin
2-19 C-reactive protein triggers the classical pathway of complement activation
2-20 Type I interferons inhibit viral replication and activate host defenses
2-21 NK cells provide an early defense against intracellular infections
2-22 NK-cell receptors differ in the ligands they bind and the signals they generate

Summary to Chapter 2
Questions
Chapter 3
Principles of Adaptive Immunity

3-1 Innate and adaptive immunity differ in their strategies for pathogen recognition
3-2 Immunoglobulins and T-cell receptors are the highly variable recognition molecules of adaptive immunity
3-3 The diversity of immunoglobulins and T-cell receptors is generated by gene rearrangement
3-4 Clonal selection of B and T lymphocytes is the guiding principle of the adaptive immune response
3-5 Adaptive immune responses are initiated in secondary lymphoid tissues by antigen-bearing dendritic cells and T cells
3-6 T-cell receptors recognize degraded fragments of pathogen proteins
3-7 T-cell receptors recognize peptide antigens bound to human cell-surface molecules
3-8 Two classes of MHC molecule present peptide antigens to two types of T cell
3-9 MHC class I molecules present antigens of intracellular origin to CD8 T cells
3-10 MHC class II molecules present antigens of extracellular origin to CD4 T cells
3-11 Effector CD4 T cells help B cells become antibody-producing plasma cells
3-12 Extracellular pathogens and their toxins are eliminated by antibodies
3-13 Antibody quality improves during the course of an adaptive immune response
3-14 Immunological memory is a consequence of clonal selection
3-15 Clonal selection makes T cells and B cells tolerant of self and responsive to pathogens
3-16 Unwanted effects of adaptive immunity cause autoimmune disease, transplant rejection and allergy

Summary to Chapter 3

Questions

Chapter 4
Antibody Structure and the Generation of B-Cell Diversity

4-1 Antibodies are composed of polypeptides with variable and constant regions
4-2 Immunoglobulin chains are folded into compact and stable protein domains
4-3 An antigen-binding site is formed from the hypervariable regions of a heavy-chain V domain and a light-chain V domain
4-4 Antigen-binding sites vary in shape and physical properties
4-5 Monoclonal antibodies are produced from a clone of antibody-producing cells
4-6 Monoclonal antibodies are used as treatments for a variety of diseases

Summary

Questions

Generation of immunoglobulin diversity in B cells before encounter with antigen

4-7 The DNA sequence encoding a V region is assembled from two or three gene segments
4-8 Random recombination of gene segments produces diversity in the antigen-binding sites of immunoglobulins
4-9 Recombination enzymes produce additional diversity in the antigen-binding site
4-10 Developing and naive B cells use alternative mRNA splicing to make both IgM and IgD
4-11 Each B cell produces immunoglobulin of a single antigen specificity
4-12 Immunoglobulin is first made in a membrane-bound form that is present on the B-cell surface

Summary

Diversification of antibodies after B cells encounter antigen

4-13 Secreted antibodies are produced by an alternative pattern of heavy-chain RNA processing
4-14 Rearranged V-region sequences are further diversified by somatic hypermutation
4-15 Isotype switching produces immunoglobulins with different C regions but identical antigen specificities
4-16 Antibodies with different C regions have different effector functions

Summary

Summary to Chapter 4

Questions

Chapter 5
Antigen Recognition by T Lymphocytes

5-1 The T-cell receptor resembles a membrane-associated Fab fragment of immunoglobulin
5-2 T-cell receptor diversity is generated by gene rearrangement
5-3 The RAG genes were key elements in the origin of adaptive immunity
5-4 Expression of the T-cell receptor on the cell surface requires association with additional proteins
5-5 A distinct population of T cells expresses a second class of T-cell receptor with γ and δ chains

Summary

Antigen processing and presentation

5-6 The two classes of MHC molecule present antigen to CD8 and CD4 T cells, respectively
5-7 The two classes of MHC molecule have similar three-dimensional structures
5-8 MHC molecules bind a variety of peptides
5-9 MHC class I and class II molecules bind peptides in different intracellular compartments
5-10 Peptides generated in the cytosol are transported into the endoplasmic reticulum, where they bind MHC class I molecules

Summary

Questions

Summary to Chapter 5

Questions
5-11 MHC class I molecules bind antigenic peptide as part of a peptide-loading complex 138
5-12 Peptides presented by MHC class II molecules are generated in acidified intracellular vesicles 140
5-13 MHC class II molecules are prevented from binding peptides in the endoplasmic reticulum by the invariant chain 140
5-14 The T-cell receptor specifically recognizes both peptide and MHC molecule 142
5-15 The two classes of MHC molecule are expressed differentially on cells 143
5-16 Cross-presentation allows extracellular antigens to be presented by MHC class I 144

Summary 145

The major histocompatibility complex 145
5-17 The diversity of MHC molecules in the human population is due to multigene families and genetic polymorphism 146
5-18 The HLA class I and class II genes occupy different regions of the HLA complex 147
5-19 Other proteins involved in antigen processing and presentation are encoded in the HLA class II region 148
5-20 MHC polymorphism affects the binding and presentation of peptide antigens to T cells 149
5-21 MHC diversity results from selection by infectious disease 151
5-22 MHC polymorphism triggers T-cell reactions that can reject transplanted organs 153
Summary 154

Summary to Chapter 5 Questions 155

Chapter 6

The Development of B Lymphocytes 159

The development of B cells in the bone marrow 160
6-1 B-cell development in the bone marrow proceeds through several stages 160
6-2 B-cell development is stimulated by bone marrow stromal cells 161
6-3 Pro-B cell rearrangement of the heavy-chain locus is an inefficient process 162
6-4 The pre-B-cell receptor monitors the quality of immunoglobulin heavy chains 163
6-5 The pre-B-cell receptor causes allelic exclusion at the immunoglobulin heavy-chain locus 164
6-6 Rearrangement of the light-chain loci by pre-B cells is relatively efficient 165
6-7 B cells have to pass two main checkpoints in their development in the bone marrow 167
6-8 A program of protein expression underlies the stages of B-cell development 168
6-9 Many B-cell tumors carry chromosomal translocations that join immunoglobulin genes to genes that regulate cell growth 171
6-10 B cells expressing the glycoprotein CD5 express a distinctive repertoire of receptors 171
Summary 173

Selection and further development of the B-cell repertoire 174
6-11 The population of immature B cells is purged of cells bearing self-reactive B-cell receptors 174
6-12 The antigen receptors of autoreactive immature B cells can be modified by receptor editing 175
6-13 Immature B cells specific for monovalent self antigens are made nonresponsive to antigen 176
6-14 Maturation and survival of B cells requires access to lymphoid follicles 177
6-15 Encounter with antigen leads to the differentiation of activated B cells into plasma cells and memory B cells 179
6-16 Different types of B-cell tumor reflect B cells at different stages of development 180
Summary 182

Summary to Chapter 6 Questions 184

Chapter 7

The Development of T Lymphocytes 187

The development of T cells in the thymus 187
7-1 T cells develop in the thymus 188
7-2 Thymocytes commit to the T-cell lineage before rearranging their T-cell receptor genes 190
7-3 The two lineages of T cells arise from a common thymocyte progenitor 191
7-4 Gene rearrangement in double-negative thymocytes leads to assembly of either a γδ receptor or a pre-T-cell receptor 193
7-5 Thymocytes can make four attempts to rearrange a β-chain gene 194
7-6 Rearrangement of the α-chain gene occurs only in pre-T cells 195
7-7 Stages in T-cell development are marked by changes in gene expression 196
Summary 197

Positive and negative selection of the T-cell repertoire 198
7-8 T cells that recognize self-MHC molecules are positively selected in the thymus 199
7-9 Continuing α-chain gene rearrangement increases the chance for positive selection 200
7-10 Positive selection determines expression of either the CD4 or the CD8 co-receptor 200
7-11 T cells specific for self antigens are removed in the thymus by negative selection 202
7-12 Tissue-specific proteins are expressed in the thymus and participate in negative selection 202
7-13 Regulatory CD4 T cells comprise a distinct lineage of CD4 T cells 203
7-14 T cells undergo further differentiation in secondary lymphoid tissues after encounter with antigen 203
7-15 Most T-cell tumors represent early or late stages of T-cell development 204
Summary 205

Summary to Chapter 7 Questions 207
Chapter 8
T Cell-Mediated Immunity

Activation of naive T cells on encounter with antigen 211

8-1 Dendritic cells carry antigens from sites of infection to secondary lymphoid tissues 212
8-2 Dendritic cells are adept and versatile at processing antigens from pathogens 213
8-3 Naive T cells first encounter antigen presented by dendritic cells in secondary lymphoid tissues 215
8-4 Homing of naive T cells to secondary lymphoid tissues is determined by chemokines and cell-adhesion molecules 216
8-5 Activation of naive T cells requires a co-stimulatory signal delivered by a professional antigen-presenting cell 219
8-6 Secondary lymphoid tissues contain three kinds of professional antigen-presenting cell 220
8-7 When T cells are activated by antigen, signals from T-cell receptors and co-receptors alter the pattern of gene transcription 222
8-8 Proliferation and differentiation of activated T cells are driven by the cytokine interleukin-2 224
8-9 Antigen recognition by a naive T cell in the absence of co-stimulation leads to the T cell becoming nonresponsive 226
8-10 On activation, CD4 T cells acquire distinctive helper functions 227
8-11 Naive CD8 T cells are activated to become cytotoxic effector cells in several different ways 229
Summary 230

The properties and functions of effector T cells 231
8-12 Effector T-cell responses to infection do not depend on co-stimulatory signals 231
8-13 Effector T-cell functions are carried out by cytokines and cytotoxins 232
8-14 Cytotoxic CD8 T cells are selective and serial killers of target cells at sites of infection 234
8-15 Cytotoxic T cells kill their target cells by inducing apoptosis 236
8-16 T\textsubscript{H}1 CD4 cells induce macrophages to become activated 237
8-17 T\textsubscript{H}1 cells coordinate the host response to pathogens that live in macrophages 239
8-18 CD4 T\textsubscript{H}2 cells activate only those B cells that recognize the same antigen as they do 241
8-19 Regulatory CD4 T cells limit the activities of effector CD4 and CD8 T cells 242
Summary 243
Summary to Chapter 8 245
Questions 245

Chapter 9
Immunity Mediated by B Cells and Antibodies 249

Antibody production by B lymphocytes 250
9-1 B-cell activation requires cross-linking of surface immunoglobulin 250
9-2 B-cell activation requires signals from the B-cell co-receptor 250
9-3 The antibody response to certain antigens does not require T-cell help 251
9-4 Activation of naive B cells by most antigens requires help from CD4 T cells 254
9-5 The primary focus of clonal expansion in the medullary cords produces plasma cells secreting IgM 256
9-6 Follicular dendritic cells provide long-lasting depositories of B-cell antigens 256
9-7 Activated B cells undergo somatic hypermutation and isotype switching in the specialized microenvironment of the B-cell zone 257
9-8 Selection of centrocytes by antigen in the germinal center drives affinity maturation of the B-cell response 259
9-9 The cytokines made by helper T cells determine how B cells switch their immunoglobulin isotype 261
9-10 Cytokines made by helper T cells determine the differentiation of antigen-activated B cells into plasma cells or memory cells 262
Summary 262

Antibody effector functions 263
9-11 IgM, IgG, and monomeric IgA protect the internal tissues of the body 264
9-12 Dimeric IgA protects the mucosal surfaces of the body 266
9-13 IgE provides a mechanism for the rapid ejection of pathogens from the body 267
9-14 Mothers provide protective antibodies to their young, both before and after birth 268
9-15 High-affinity neutralizing antibodies prevent viruses and bacteria from infecting cells 268
9-16 High-affinity IgG and IgA antibodies are used to neutralize microbial toxins and animal venoms 270
9-17 Binding of IgM to antigen on a pathogen's surface activates complement by the classical pathway 272
9-18 Two forms of C4 tend to be fixed at different sites on pathogen surfaces 273
9-19 Complement activation by IgG requires the participation of two or more IgG molecules 274
9-20 Erythrocytes facilitate the removal of immune complexes from the circulation 275
9-21 The four subclasses of IgG have different and complementary functions 275
9-22 Fc receptors enable hematopoietic cells to bind and be activated by IgG bound to pathogens 278
9-23 A variety of low-affinity Fc receptors are specific for IgG 280
9-24 IgE binds to high-affinity Fc receptors on mast cells, basophils, and activated eosinophils 282
9-25 The Fc receptor for monomeric IgA belongs to a different family from the Fc receptors for IgG and IgE 284
Summary 285
Summary to Chapter 9 285
Questions 286
Chapter 10
The Body's Defenses Against Infection

Preventing infection at mucosal surfaces

10-1 The communication functions of mucosal surfaces render them vulnerable to infection

10-2 The gastrointestinal tract is invested with distinctive secondary lymphoid tissues

10-3 M cells and dendritic cells facilitate transport of microbes from the gut lumen to gut-associated lymphoid tissues

10-4 Effector lymphocytes populate healthy mucosal tissue in the absence of infection

10-5 B cells and T cells commit to mucosal lymphoid tissues after they encounter their specific antigen

10-6 Effector lymphocytes activated in any one mucosal tissue recirculate through all mucosal tissues

10-7 Dimeric IgA binds pathogens at various sites in mucosal tissues

10-8 Two subclasses of IgA have complementary properties for controlling microbial populations

10-9 Humans with selective deficiency of IgA do not succumb to infection

10-10 Intestinal epithelial cells contribute to innate defense of the gut

10-11 Intestinal helminth infections provoke strong Th2-mediated immune responses

Summary

Immunological memory and the secondary immune response

10-12 The antibodies formed during a primary immune response prevent reinfection for several months after disease

10-13 Immunological memory is sustained by clones of long-lived memory T cells and B cells

10-14 Vaccination against a pathogen can generate immunological memory that persists for life

10-15 Pathogen-specific memory B cells are more abundant and make better antibodies than do naive B cells

10-16 Activation of a secondary response involves cell–cell interactions like those activating the primary response

10-17 Only memory B cells, and not naive B cells, participate in the secondary immune response

10-18 Immune-complex mediated inhibition of naive B cells is used to prevent hemolytic anemia of the newborn

10-19 In the response to influenza virus, immunological memory is gradually eroded

10-20 Several cell-surface markers distinguish memory T cells from naive T cells

10-21 Two types of memory T cell function in different tissues

10-22 Maintenance of immunological memory is not dependent on antigen

Summary

Bridging innate and adaptive immunity

10-23 γδ T cells contribute to the innate immune response

10-24 Individual NK cells express many different combinations of receptors belonging to one of two receptor families

10-25 NK cells use receptors for MHC class I molecules to identify infected cells

10-26 NK cells have inhibitory receptors with different specificities for MHC class I molecules

10-27 Inhibitory receptors for self MHC class I make NK cells tolerant to self and responsive to loss of MHC class I

10-28 T cells recognizing lipid antigens protect against mycobacterial infection

10-29 NK T cells are cells of innate immunity that express αβ T-cell receptors

Summary

Summary to Chapter 10

Questions

Chapter 11
Failures of the Body's Defenses

Evasion and subversion of the immune system by pathogens

11-1 Genetic variation within some species of pathogens prevents effective long-term immunity

11-2 Mutation and recombination allow influenza virus to escape from immunity

11-3 Trypanosomes use gene rearrangement to change their surface antigens

11-4 Herpesviruses persist in human hosts by hiding from the immune response

11-5 Certain pathogens sabotage or subvert immune defense mechanisms

11-6 Bacterial superantigens stimulate a massive but ineffective T-cell response

11-7 Immune responses can contribute to disease

Summary

Inherited immunodeficiency diseases

11-8 Rare primary immunodeficiency diseases reveal how the human immune system works

11-9 Inherited immunodeficiency diseases are caused by dominant, recessive, or X-linked gene defects

11-10 Recessive and dominant mutations in the interferon-γ receptor cause diseases of differing severity

11-11 Antibody deficiency leads to an inability to clear extracellular bacteria

11-12 Diminished production of antibodies also results from inherited defects in T-cell help

11-13 Defects in complement components impair antibody responses and cause the accumulation of immune complexes

11-14 Defects in phagocytes result in enhanced susceptibility to bacterial infection

11-15 Defects in T-cell function result in severe combined immune deficiencies
11-16 Some inherited immunodeficiencies lead to specific disease susceptibilities 348
11-17 Transplantation of hematopoietic stem cells is used to correct genetic defects of the immune system 349

 Summary 351

 Acquired immune deficiency syndrome 351
11-18 HIV is a retrovirus that causes slowly progressing disease 351
11-19 HIV infects CD4 T cells, macrophages, and dendritic cells 352
11-20 Most people who become infected with HIV progress in time to develop AIDS 353
11-21 Genetic deficiency of the CCR5 co-receptor for HIV confers resistance to infection 356
11-22 HLA and KIR polymorphisms influence the progression to AIDS 356
11-23 HIV escapes the immune response and develops resistance to antiviral drugs by rapid mutation 357
11-24 Clinical latency is a period of active infection and renewal of CD4 T cells 358
11-25 HIV infection leads to immunodeficiency and death from opportunistic infections 359

 Summary 360

 Summary to Chapter 11 361

 Questions 361

Chapter 12

Over-reactions of the Immune System 365

 12-1 Four types of hypersensitivity reaction are caused by different effector mechanisms of adaptive immunity 365

 Type I hypersensitivity reactions 367

 12-2 IgE binding to FcεR1 provides mast cells, basophils, and activated eosinophils with antigen receptors 367
12-3 Mast cells defend and maintain the tissues where they live 368
12-4 Tissue mast cells orchestrate IgE-mediated allergic reactions through the release of inflammatory mediators 370
12-5 Eosinophils are specialized granulocytes that release toxic mediators in IgE-mediated responses 371
12-6 Basophils are rare granulocytes that initiate Th2 responses and the production of IgE 373
12-7 Very few antigens that enter the human body are allergens that stimulate an IgE response 374
12-8 Predisposition to allergic disease has a genetic basis 376
12-9 IgE-mediated allergic reactions consist of an immediate response followed by a late-phase response 377
12-10 The effects of IgE-mediated allergic reactions vary with the site of mast-cell activation 378
12-11 Systemic anaphylaxis is caused by allergens in the blood 379
12-12 Rhinitis and asthma are caused by inhaled allergens 380

 12-13 Urticaria, angioedema, and eczema are allergic reactions in the skin 381

 12-14 Food allergies cause systemic effects as well as gut reactions 382

 12-15 People with parasite infections and high levels of IgE rarely develop allergic disease 383

 12-16 Allergic reactions are prevented and treated by three complementary approaches 384

 Summary 385

 Type II, III, and IV hypersensitivity reactions 386

 12-17 Type II hypersensitivity reactions are caused by antibodies specific for altered components of human cells 386

 12-18 To avoid type II hypersensitivity reactions in blood transfusion, donors and recipients are matched for ABO antigens 387

 12-19 Type III hypersensitivity reactions are caused by immune complexes formed from IgG and soluble antigens 389

 12-20 Systemic disease caused by immune complexes can follow the administration of large quantities of soluble antigens 390

 12-21 Inhaled antigens can cause type III hypersensitivity reactions 392

 12-22 Type IV hypersensitivity reactions are mediated by antigen-specific effector T cells 392

 12-23 Celiac disease is caused by hypersensitivity to common food proteins 395

 12-24 Severe hypersensitivity reactions to certain drugs are strongly correlated with HLA class I allotypes 397

 Summary 398

 Summary to Chapter 12 398

 Questions 399

Chapter 13

Disruption of Healthy Tissue by the Immune Response 403

 Autoimmune diseases 403

 13-1 In healthy individuals the immune system is tolerant of self antigens 404

 13-2 Autoimmune diseases are caused by the loss of tolerance to self antigens 404

 13-3 The effector mechanisms of autoimmunity resemble those causing hypersensitivity reactions 405

 13-4 Endocrine glands contain specialized cells that are targets for organ-specific autoimmunity 407

 13-5 Autoimmune diseases of the thyroid can cause either underproduction or overproduction of thyroid hormones 408

 13-6 Ectopic lymphoid tissue can form at sites inflamed by autoimmune disease 409

 13-7 The cause of an autoimmune disease can be revealed by the transfer of the disease by immune effectors 410

 13-8 Type 1 diabetes is caused by the selective destruction of insulin-producing cells in the pancreas 411
13-9 Autoantibodies against common components of human cells can cause systemic autoimmune disease 412
13-10 Most rheumatological diseases are caused by autoimmunity 413
13-11 Rheumatoid arthritis can be treated with monoclonal antibodies that target either TNF-α or B cells 413
13-12 Multiple sclerosis and myasthenia gravis are autoimmune diseases of the nervous system 414
13-13 All autoimmune diseases involve breaking T-cell tolerance 417
13-14 Incomplete deletion of self-reactive T cells in the thymus causes autoimmune disease 417
13-15 Insufficient control of T-cell co-stimulation favors autoimmunity 418
13-16 Regulatory T cells protect cells and tissues from autoimmunity 419
13-17 HLA is the dominant genetic factor affecting susceptibility to autoimmune disease 420
13-18 Different combinations of HLA class II allotypes confer susceptibility and resistance to diabetes 422
13-19 Autoimmunity is initiated by disease-associated HLA allotypes presenting antigens to autoimmune T cells 424
13-20 Noninfectious environmental factors influence the course of autoimmune diseases 425
13-21 Genetic and environmental effects combine to cause one form of rheumatoid arthritis 426
13-22 Infections are environmental factors that can trigger autoimmune disease 427
13-23 Autoimmune T cells can be activated in a pathogen-specific or nonspecific manner by infection 428
13-24 In the course of autoimmune disease the specificity of the autoimmune response broadens 430
13-25 Senescence of the T-cell population can contribute to autoimmunity 432
13-26 Does the current increase in hypersensitivity and autoimmune disease have a common cause? 432
13-27 Summary 433
13-28 Questions 434

Chapter 14
Vaccination to Prevent Infectious Disease 437
14-1 Viral vaccines are made from whole viruses or viral components 437
14-2 Bacterial vaccines are made from whole bacteria, their secreted toxins, or capsular polysaccharides 439
14-3 Adjuvants nonspecifically enhance the immune response 441
14-4 Vaccination can inadvertently cause disease 443
14-5 The need for a vaccine and the demands placed on it change with the prevalence of the disease 444
14-6 Vaccines have yet to be found for many chronic pathogens 446
14-7 Genome sequences of human pathogens open up new avenues of vaccine design 447
14-8 A useful vaccine against HIV has yet to be found 449
14-9 An effective and acceptable rotavirus vaccine has been developed 450
14-10 Vaccine development faces greater public scrutiny than drug development 450
14-11 Summary to Chapter 14 451
14-12 Questions 452

Chapter 15
Transplantation of Tissues and Organs 455
15-1 Transplant rejection and graft-versus-host reaction are immune responses caused by genetic differences between transplant donors and recipients 455
15-2 Blood transfusion is the most widespread kind of transplantation in clinical medicine 456
15-3 Antibodies against ABO or HLA antigens cause hyperacute rejection of transplanted organs 458
15-4 Anti-HLA antibodies can arise from pregnancy, blood transfusion, or previous transplants 459
15-5 Organ transplantation involves procedures that inflame the donated organ and the transplant recipient 460
15-6 Acute rejection is caused by effector T cells responding to HLA differences between donor and recipient 460
15-7 HLA differences between transplant donor and recipient activate numerous alloreactive T cells 462
15-8 Negative selection in the thymus limits the number of expressed MHC isoforms 462
15-9 Chronic rejection of organ transplants is due to the indirect pathway of allorecognition 462
15-10 Matching donor and recipient for HLA class I and class II allotypes improves the outcome of organ transplantation 466
15-11 Allogeneic transplantation is made possible by the use of three types of immunosuppressive drug 466
15-12 Corticosteroids change patterns of gene expression 467
15-13 Cytotoxic drugs kill proliferating cells 469
15-14 Cyclosporin A, tacrolimus, and rapamycin selectively inhibit T-cell activation 470
15-15 Antibodies specific for T cells are used to prevent and control acute rejection 472
15-16 Patients needing a transplant outnumber the available organs 473
15-17 The need for HLA matching and immunosuppressive therapy varies with the organ transplanted 474

Summary 475

Transplantation of hematopoietic stem cells 476

15-18 Bone marrow transplantation is a treatment for genetic diseases of blood cells 476

15-19 Allogeneic bone marrow transplantation is the preferred treatment for many cancers 477

15-20 The alloreactions in bone marrow transplantation attack the patient, not the transplant 477

15-21 Matching donor and recipient for HLA class I and II is particularly important in bone marrow transplantation 479

15-22 HLA-identical bone marrow transplants cause GVHD through recognition of minor histocompatibility antigens 480

15-23 Some GVHD helps engraftment and prevents relapse of malignant disease 481

15-24 NK cells also mediate GVL effects 482

15-25 Hematopoietic cell transplantation can induce tolerance to solid organ transplants 483

Summary 484

Summary to Chapter 15 484

Questions 485

Chapter 16
Cancer and Its Interactions with the Immune System 489

16-1 Cancer results from mutations that cause uncontrolled cell growth 490

16-2 A cancer arises from a single cell that has accumulated multiple mutations 491

16-3 Exposure to chemicals, radiation, and viruses can facilitate the progression to cancer 492

16-4 Certain common features distinguish cancer cells from normal cells 494

16-5 Immune responses to cancer have similarities with those to virus-infected cells 494

16-6 Differences in MHC class I allow tumor cells to be attacked and eliminated by cytotoxic T cells 495

16-7 Mutations in cellular genes acquired during oncogenesis provide tumor-specific antigens 496

16-8 Cancer/testis antigens are a prominent type of tumor-associated antigen 498

16-9 Successful tumors evade and manipulate the immune response 498

16-10 By preventing infection, vaccination protects against cancers caused by viruses 500

16-11 Vaccination with tumor antigens can cause cancer to regress 500

16-12 Increasing co-stimulation can boost the T-cell response to tumor cells 501

16-13 Heat-shock proteins can provide natural adjuvants of tumor immunity 501

16-14 Monoclonal antibodies against cell-surface tumor antigens can be used for diagnosis and immunotherapy 502

Summary to Chapter 16 504

Questions 505